Power-Efficient Deep Convolutional Neural Network Design Through Zero-Gating PEs and Partial-Sum Reuse Centric Dataflow
نویسندگان
چکیده
منابع مشابه
Deep Convolutional Neural Network Design Patterns
Recent research in the deep learning field has produced a plethora of new architectures. At the same time, a growing number of groups are applying deep learning to new applications. Some of these groups are likely to be composed of inexperienced deep learning practitioners who are baffled by the dizzying array of architecture choices and therefore opt to use an older architecture (i.e., Alexnet...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملDeep Columnar Convolutional Neural Network
Recent developments in the field of deep learning have shown that convolutional networks with several layers can approach human level accuracy in tasks such as handwritten digit classification and object recognition. It is observed that the state-of-the-art performance is obtained from model ensembles, where several models are trained on the same data and their predictions probabilities are ave...
متن کاملSingle image depth estimation by dilated deep residual convolutional neural network and soft-weight-sum inference
This paper proposes a new residual convolutional neural network (CNN) architecture for single image depth estimation. Compared with existing deep CNN based methods, our method achieves much better results with fewer training examples and model parameters. The advantages of our method come from the usage of dilated convolution, skip connection architecture and soft-weight-sum inference. Experime...
متن کاملDeep Convolutional Neural Network for Image Deconvolution
Many fundamental image-related problems involve deconvolution operators. Real blur degradation seldom complies with an ideal linear convolution model due to camera noise, saturation, image compression, to name a few. Instead of perfectly modeling outliers, which is rather challenging from a generative model perspective, we develop a deep convolutional neural network to capture the characteristi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3053259